Skip to main content
Log in

Structural and compositional analysis of solid oxide fuel cell electrolytes using transmission electron microscopy

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

High resolution characterization of materials for solid oxide fuel cells (SOFCs) have drawn attention in recent years due in part by advances made in instrumentation that enable in situ characterization during device operation. Transmission electron microscopy (TEM) and advanced techniques such as energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) have been widely used to characterize SOFC electrolytes, e.g. doped zirconia and doped ceria, in nanometer to atomic scale resolution. TEM and associated diffraction patterns enable the high resolution analysis of crystal structure of electrolyte at the nanoscale, while EDS and EELS are utilized to characterize their chemical composition in sub-nanometer scale. This paper reviews the use of these techniques for SOFC electrolyte characterization and presents new possibilities for SOFC materials research enabled by the introduction of recently developed technologies such as aberration-corrected or environmental TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steel, B. C. H. and Heinzel, A., “Materials for fuel-cell technologies,” Nature, Vol. 414, pp. 345–352, 2001.

    Article  Google Scholar 

  2. Shim, J. H., Chao, C.-C., Huang, H., and Prinz, F. B., “Atomic Layer Deposition of Yttria Stabilized Zirconia for Solid Oxide Fuel Cells,” Chem. Mater., Vol. 19, pp. 3850–3854, 2007.

    Article  Google Scholar 

  3. Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., and Prinz, F. B., “High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation,” J. Electrochem. Soc., Vol. 154, pp. B20–B24, 2007.

    Article  Google Scholar 

  4. Shim, J. H., Park, J. S., An, J., Gür, T. M., and Prinz, F. B., “Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes,” Chem. Mater., Vol. 21, No. 14, pp. 3290–3296, 2009.

    Article  Google Scholar 

  5. Kim, Y. B., Shim, J. H., Gür, T. M., and Prinz, F. B., “Epitaxial and Polycrystalline Gadolinia-Doped Ceria Cathode Interlayers for Low Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society, Vol. 158, pp. 1453–1457, 2011.

    Article  Google Scholar 

  6. Kim, Y. B., Holme, T. P., Gür, T. M., and Prinz, F. B., “Surface-Modified Low-Temperature Solid Oxide Fuel Cell,” Adv. Func. Mater., Vol. 21, No. 24, pp. 4684–4690, 2011.

    Article  Google Scholar 

  7. Fan, Z. and Prinz, F. B., “Enhancing Oxide Ion Incorporation Kinetics by Nanoscale Yttria-Doped Ceria Interlayers,” Nano Letters, Vol. 11, pp. 2202–2205, 2011.

    Article  Google Scholar 

  8. Aoki, M., Chiang, Y.-M., Kosacki, I., Lee, J. R., Tuller, H. L., and Liu, Y. P., “Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia,” J. Am. Ceram. Soc., Vol. 79, No. 5, pp. 1169–1180, 2096.

    Article  Google Scholar 

  9. Guo, X. and Maier, J., “Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis,” J. Electrochem. Soc., Vol. 148, No. 3, pp. E121–E126, 2001.

    Article  Google Scholar 

  10. Lee, J.-S. and Kim, D.-Y., “Space-charge concepts on grain boundary impedance of a high-purity yttria-stabilized tetragonal zirconia polycrystal,” J. Mater. Res., Vol. 16, No. 9, pp. 2739–2751, 2001.

    Article  Google Scholar 

  11. Williams, D. B. and Carter, C. B., “Transmission Electron Microscopy,” Plenum Press, pp. 553–572, 2096.

  12. Shim, J. H., Park, J. S., Holme, T., Crabb, K., Lee, W., Kim, Y. B., Tian, X., Gür, T. M., and Prinz, F. B., “Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor,” Acta Materialia, Vol. 60, pp. 1–7, 2012.

    Article  Google Scholar 

  13. Puurunen, R. L., “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., Vol. 97, No. 12, pp. 1–52, 2005.

    Article  Google Scholar 

  14. Kreuer, K. D., “Proton-conducting oxides,” Ann. Rev. Mat. Res., Vol. 33, pp. 333–359, 2003.

    Article  Google Scholar 

  15. Hausmann, D. M., Kim, E., Becker, J., and Gordon, R. G., “Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors,” Chem. Mater., Vol. 14, pp. 4350–4358, 2002.

    Article  Google Scholar 

  16. Wang, L. S. and Barnett, S. A., “Deposition, Structure, and Properties of Cermet Thin Films Composed of Ag and Y-Stabilized Zirconia,” J. Electrochem. Soc., Vol. 139, pp. 1134–1140, 2092.

    Article  Google Scholar 

  17. Kueper, T. W., Visco, S. J., and De Jonghe, L. C., “Thin-film ceramic electrolytes deposited on porous and non-porous substrates by sol-gel techniques,” Solid State Ionics, Vol. 52, pp. 251–259, 2092.

    Article  Google Scholar 

  18. Kokai, F., Amano, K., Ota, H., Ochia, Y., and Umemura, F., “XeCl laser ablative deposition and characterization of yttria-stabilized zirconia thin films on glass and CeO2-Sm2O3,” J. Appl. Phys., Vol. 72, pp. 699–704, 2092.

    Article  Google Scholar 

  19. Chour, K. W., Chen, J., and Xu, R., “Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications,” Thin Solid Films, Vol. 304, pp. 106–112, 2097.

    Article  Google Scholar 

  20. Kreuer, K. D., “Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides,” Solid State Ionics, Vol. 125, pp. 285–302, 2099.

    Article  Google Scholar 

  21. Ryu, K. H. and Haile, S. M., “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions,” Solid State Ionics, Vol. 125, No. 1–4, pp. 355–367, 2099.

    Google Scholar 

  22. Kim, Y. B., Gür, T. M., Kang, S., Jung, H.-J., Sinclair, R., Prinz, F. B., “Crater patterned 3-D proton conducting ceramic fuel cell architecture with ultra thin Y: BaZrO3 electrolyte,” Electrochemistry Communications, Vol. 13, pp. 403–406, 2011.

    Article  Google Scholar 

  23. Virkar, A. V., “Theoretical Analysis of Solid Oxide Fuel Cells with Two-Layer, Composite Electrolytes: Electrolyte Stability,” J. Electrochem. Soc., Vol. 138, No. 5, pp. 1481–1487, 2091.

    Article  Google Scholar 

  24. Eguchi, K., Setoguchi, T., Inoue, T., and Arai, H., “Electrical properties of ceria-based oxides and their application to solid oxide fuel cells,” Solid State Ionics, Vol. 52, No. 1–3, pp. 165–172, 2092.

    Google Scholar 

  25. Tsai, T. and Barnett, S. A., “Increased solid-oxide fuel cell power density using interfacial ceria layers,” Solid State Ionics, Vol. 98, No. 3–4, pp. 191–196, 2097.

    Google Scholar 

  26. Kim, Y. B., Park, J. S., Gur, T. M., and Prinz, F. B., “Oxygen activation over engineered surface grains on YDC/YSZ interlayered composite electrolyte for LT-SOFC,” Journal of Power Sources, Vol. 196, pp. 10550–10555, 2011.

    Article  Google Scholar 

  27. Lei, Y., Ito, Y., Browning, N. D., and Mazanec, T. J., “Segregation effects at grain boundaries in fluorite-structured ceramics,” J. Am. Ceram. Soc., Vol. 85, No. 9, pp. 2359–2363, 2002.

    Article  Google Scholar 

  28. Hojo, H., Mizoguchi, T., Ohta, H., Findlay, S. D., Shibata, N., Yamamoto, T., and Ikuhara, Y., “Atomic Structure of a CeO2 Grain Boundary: The Role of Oxygen Vacancies,” Nano. Lett., Vol. 10, No. 11, pp. 4668–4672, 2010.

    Article  Google Scholar 

  29. Lee, W., Jung, H. J., Lee, M. H., Kim, Y. B., Park, J. S., Sinclair, R., and Prinz, F. B., “Oxygen Surface Exchange at Grain Boundaries of Oxide Ion Conductors,” Adv. Funct. Mater., Vol. 22, No. 5, pp. 965–971, 2011.

    Article  Google Scholar 

  30. Jia, C. L., Lentzen, M., and Urban, K., “Atomic-resolution imaging of oxygen in perovskite ceramics,” Science, Vol. 299, No. 5608, pp. 870–873, 2003.

    Article  Google Scholar 

  31. Jia, C. L. and Urban, K., “Atomic-resolution measurement of oxygen concentration in oxide materials,” Science, Vol. 303, No. 5666, pp. 2001–2004, 2004.

    Article  Google Scholar 

  32. Nellist, P. D., Chisholm, M. F., Dellby, N., Krivanek, O. L., Murfitt, M. F., Szilagyi, Z. S., Lupini, A. R., Borisevich, A., Sides, W. H. Jr., and Pennycook, S. J., “Direct sub-angstrom imaging of a crystal lattice,” Science, Vol. 305, No. 5691, p. 1741, 2004.

    Article  Google Scholar 

  33. Muller, D. A., Fitting Kourkoutis, L., Murfitt, M., Song, J. H., Hwang, H. Y., Silcox, J., Dellby, N., and Krivanek, O. L., “Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy,” Science, Vol. 319, No. 5866, pp. 1073–1076, 2008.

    Article  Google Scholar 

  34. Gai, P. L. and Kourtakis, K., “Solid-state defect mechanism in vanadyl pyrophosphate catalysts: Implications for selective oxidation,” Science, Vol. 267, No. 5198, pp. 661–663, 2095.

    Article  Google Scholar 

  35. Boyes, E. D. and Gai, P. L., “Environmental high resolution electron microscopy and applications to chemical science,” Ultramicroscopy, Vol. 67, No. 1–4, pp. 219–232, 2097.

    Google Scholar 

  36. Shim, J. H., Gür, T. M., and Prinz, F. B., “Proton conduction in thin film yttrium-doped barium zirconate,” Appl. Phys. Lett., Vol. 92, No. 25, pp. 3290–3296, 2008.

    Article  Google Scholar 

  37. An, J., Kim, Y. B., Park, J. S., Shim, J. H., Gür, T. M., and Prinz, F. B., “Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition,” J. Vac. Sci. Technol. A, Vol. 30, p. 01A161, 2012.

    Article  Google Scholar 

  38. Kim, Y. B., Gür, T. M., Jung, H.-J., Kang, S., Sinclair, R., and Prinz, F. B., “Effect of crystallinity on proton conductivity in yttrium-doped barium zirconate thin films,” Solid State Ionics, Vol. 198, pp. 39–46, 2011.

    Article  Google Scholar 

  39. Hong, C. U., Kang, H. S., Kim, S. J., Kang, S. J., and Kim, G. B., “Transmission electron microscopy observation of a single Ni dot fabricated using scanning tunneling microscopy,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 3, pp. 469–472, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihwan An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, J., Kim, Y.B., Jung, H.J. et al. Structural and compositional analysis of solid oxide fuel cell electrolytes using transmission electron microscopy. Int. J. Precis. Eng. Manuf. 13, 1273–1279 (2012). https://doi.org/10.1007/s12541-012-0170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0170-8

Keywords

Navigation